3x^2-18x+23=3

Simple and best practice solution for 3x^2-18x+23=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2-18x+23=3 equation:



3x^2-18x+23=3
We move all terms to the left:
3x^2-18x+23-(3)=0
We add all the numbers together, and all the variables
3x^2-18x+20=0
a = 3; b = -18; c = +20;
Δ = b2-4ac
Δ = -182-4·3·20
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{21}}{2*3}=\frac{18-2\sqrt{21}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{21}}{2*3}=\frac{18+2\sqrt{21}}{6} $

See similar equations:

| -3n²-53n+232=ⁿ | | -3n²-53+232=ⁿ | | 4z/9+8=2 | | (q—1.06)(8q+3.24)=(2q—6.33)(4q+9.61) | | (x-1/5)+(x-2/2)=(x/3)+1 | | 3x+12=8x-2 | | x+4x+(4x+10)=163 | | 4(2x+3)=3(x+2 | | 3x+3(x-5)= | | 2x2-6x-1=0 | | 4(y+6)=74 | | z÷7+2=3 | | n/8+.5=3.5 | | P(x)=3x2+4x+5, | | (50-2y)+2y=50 | | X+.5y=50 | | 4x+3/9+29-7x/12-5x=8x+19/18 | | 144/x=18 | | 4(t–1)=-48 | | -55=-5q–6q | | 50=3p+14 | | -a+63=1 | | -2=-a+2a | | -75=10d+5d | | 18-a/3=19 | | u/3=-2 | | 3=-s-12/4 | | -10=s/6-8 | | -a/2+18=23 | | 12+8y=20 | | 1=3+d/4 | | (v-5)^2=2v^2-v+39 |

Equations solver categories